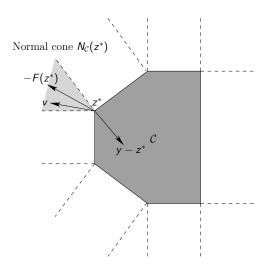
PATH VI: a pathsearch method for variational inequalities

Michael C. Ferris (Joint with Youngdae Kim and Todd Munson)

University of Wisconsin, Madison Funded by DOE-MACS Grant with Argonne National Laboratory

Computational Contact Mechanics: Advances and Frontiers in Modeling Contact February 17, 2014

VI: $-F(z) \in \mathcal{N}_{\mathcal{C}}(z)$



Many applications where F is not the derivative of some f

Ferris (Univ. Wisconsin) PATH VI Banff, February 2014 2 / 35

Variational Inequality Formulation

- $F: \mathbb{R}^n \to \mathbb{R}^n$
- Ideally: $\mathcal{C} \subseteq \mathbb{R}^n$ constraint set
- ullet Often: $\mathcal{C}\subseteq\mathbb{R}^n$ simple bounds

$$0 \in F(z) + N_{\mathcal{C}}(z)$$

- VI generalizes many optimization problems: LP, MCP, and LCP
 - ▶ For Nonlinear Equations: F(z) = 0 set $C \equiv \mathbb{R}^n$
 - ▶ For NCP: $0 \le F(z)$, $z \ge 0$ and $z^T F(z) = 0$ set $\mathcal{C} \equiv \mathbb{R}^n_+$
 - ▶ For LCP, set F(z) = Mz + q and $C \equiv \mathbf{R}_{+}^{n}$.
 - ▶ For MCP (rectangular VI), set $C \equiv [I, u]^n$.
 - Example: convex optimization first-order optimality condition:

$$\min_{z \in \mathcal{C}} f(z) \Longleftrightarrow -\nabla f(z) \in N_{\mathcal{C}}(z) \iff 0 \in \nabla f(z) + N_{\mathcal{C}}(z)$$

For LP, set $F(z) \equiv \nabla f(z) = p$ and $C = \{z \mid Az = a, Hz \leq h\}$.

AVI over polyhedral convex set

An affine function

$$F: \mathbb{R}^n \to \mathbb{R}^n, \ F(z) = Mz + q, \ M \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n$$

A polyhedral convex set

$$C = \{z \in \mathbb{R}^n \mid Az(\geq, =, \leq)a, \ I \leq z \leq u\}, \ A \in \mathbb{R}^{m \times n}$$

Find a point $z^* \in \mathcal{C}$ satisfying

$$\langle F(z^*), y - z^* \rangle \geq 0, \ \forall y \in C$$

 $(\Leftrightarrow) \langle -F(z^*), y - z^* \rangle \leq 0, \ \forall y \in C$
 $(\Leftrightarrow) -F(z^*) \in N_C(z^*)$

where

$$N_{\mathcal{C}}(z^*) = \{ v \mid \langle v, y - z^* \rangle \leq 0, \forall y \in \mathcal{C} \}$$

Variational inequalities (current state)

• Find $z \in \mathcal{C}$ such that

$$0 \in F(z) + \mathcal{N}_{\mathcal{C}}(z)$$

- model vi / F, g /; empinfo: vi F z g
- Convert problem into complementarity problem by introducing multipliers on representation of e.g. $C = \{z \in [I, u] : g(z) \le 0\}$

$$egin{bmatrix} F(z) -
abla g(z) \end{pmatrix} + \mathcal{N}_{[I,u] imes \mathbb{R}_+^m}$$

ullet ${\cal C}$ polyhedral (e.g. ${\cal C}=\{z\in [{\it l},u]: {\it Az}\leq a\}$ and ${\it F}(z)={\it Mz}+q$

$$\begin{bmatrix} M & -A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} z \\ \lambda \end{bmatrix} + \begin{bmatrix} q \\ -a \end{bmatrix} + \mathcal{N}_{[I,u] \times \mathbb{R}_+^m}$$

Theorem

Suppose C is a polyhedral convex set and M is an L-matrix with respect to recC which is invertible on the lineality space of C. Then exactly one of the following occurs:

- PATHAVI solves (AVI)
- the following system has no solution

$$Mz + q \in (\operatorname{rec}\mathcal{C})^D, \quad z \in \mathcal{C}.$$
 (1)

Corollary

If M is copositive–plus with respect to recC, then exactly one of the following occurs:

- PATHAVI solves (AVI)
- (1) has no solution

Note also that if C is compact, then any matrix M is an L-matrix with respect to recC. So always solved.

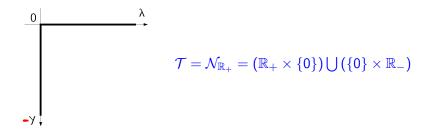
Experimental results: AVI vs MCP

PATH is a solver for MCP (mixed complementarity problem).

- Run PathAVI over AVI formulation.
- ullet Run PATH over AVI in MCP form (poorer theory as ${
 m rec} {\cal C}$ larger).
- Data generation
 - ▶ M is an $n \times n$ symmetric positive definite/indefinite matrix.
 - ► A has m randomly generated bounded inequality constraints.

(<i>m</i> , <i>n</i>)	PathAVI		PATH		% negative
(111, 11)	status	# iterations	status	# iterations	eigenvalues
(180,60)	S	55	S	72	0
(180,60)	S	45	S	306	20
(180,60)	S	2	F	9616	60
(180,60)	S	1	F	10981	80
(360,120)	S	124	S	267	0
(360,120)	S	55	S	1095	20
(360,120)	S	2	F	10020	60
(360,120)	S	1	F	7988	80

Complementarity Problems via Graphs



$$-y \in \mathcal{T}(\lambda) \iff (\lambda, -y) \in \mathcal{T} \iff 0 \le \lambda \perp y \ge 0$$

By approximating (smoothing) graph can generate interior point algorithms for example $y\lambda=\epsilon,y,\lambda>0$

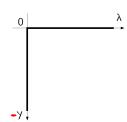
$$-F(z) \in \mathcal{N}_{\mathbb{R}^n_{\perp}}(z) \iff (z, -F(z)) \in \mathcal{T}^n \iff 0 \le z \perp F(z) \ge 0$$

Complementarity Systems (DVI)

$$\frac{dx}{dt}(t) = f(x(t), \lambda(t))$$

$$y(t) = h(x(t), \lambda(t))$$

$$0 \le y(t) \perp \lambda(t) \ge 0$$



Complementarity Systems (DVI)

$$\frac{dx}{dt}(t) = f(x(t), \lambda(t))$$

$$y(t) = h(x(t), \lambda(t))$$

$$0 \le y(t) \perp \lambda(t) \ge 0$$

$$y(t) = h(x(t), \lambda(t))$$

$$y(t) = h(x(t), \lambda(t)$$

$$y(t) = h(x(t), \lambda(t))$$

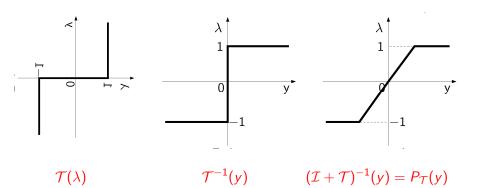
$$y(t) = h(x(t), \lambda(t))$$

$$y(t) = h(x(t),$$

Complementarity Systems (DVI)

Operators and Graphs $(\mathcal{C} = [-1,1], \mathcal{T} = \mathcal{N}_{\mathcal{C}})$

$$z_i = -1, -F_i(z) \le 0 \text{ or } z_i \in (-1, 1), -F_i(z) = 0 \text{ or } z_i = 1, -F_i(z) \ge 0$$



 $P_{\mathcal{T}}(y)$ is the projection of y onto [-1,1]

Generalized Equations

ullet Suppose ${\mathcal T}$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

- Define $P_{\mathcal{T}} = (\mathcal{I} + \mathcal{T})^{-1}$
- If \mathcal{T} is polyhedral (graph of \mathcal{T} is a finite union of convex polyhedral sets) then $P_{\mathcal{T}}$ is piecewise affine (continous, single-valued, non-expansive)

$$0 \in F(z) + \mathcal{T}(z) \iff z \in F(z) + \mathcal{T}(z) + \mathcal{T}(z)$$

$$\iff z - F(z) \in (\mathcal{I} + \mathcal{T})(z) \iff P_{\mathcal{T}}(z - F(z)) = z$$

Use in fixed point iterations (cf projected gradient methods)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

Normal Map

ullet Suppose ${\mathcal T}$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

• Define $P_{\mathcal{T}} = (I + \mathcal{T})^{-1}$

$$0 \in F(z) + \mathcal{T}(z) \iff z \in F(z) + \mathcal{T}(z) + \mathcal{T}(z)$$

$$\iff z - F(z) = x \text{ and } x \in (\mathcal{I} + \mathcal{T})(z)$$

$$\iff z - F(z) = x \text{ and } P_{\mathcal{T}}(x) = z$$

$$\iff P_{\mathcal{T}}(x) - F(P_{\mathcal{T}}(x)) = x$$

$$\iff 0 = F(P_{\mathcal{T}}(x)) + x - P_{\mathcal{T}}(x)$$

This is the so-called Normal Map Equation

Key idea of algorithm $\mathcal{T} = \mathcal{N}_{\mathcal{C}}$

Homotopy: Easy solution for μ large, drive $\mu \to 0$.

$$\mu r = F(\pi_{\mathcal{C}}(x(\mu))) + x(\mu) - \pi_{\mathcal{C}}(x(\mu))$$

Define
$$z(\mu) = \pi_{\mathcal{C}}(x(\mu))$$
, then

$$\mu r = F(z(\mu)) + x(\mu) - z(\mu)$$

$$x-z$$
 $\in N_{\mathcal{C}}(z)$ $N_{\mathcal{C}}(z)$ $= \{-A^T u - w + v\}$ such that $Az(\geq,=,\leq)a \perp u(\geq,\mathsf{free},\leq)0$ $0 \leq w \perp z - l \geq 0$ $0 \leq v \perp u - z \geq 0$

Ray start and complementary pivoting

Solve the normal map by

- **①** Computing an extreme point $z_e \in \mathcal{C}$ by solving Phase I.
- ② Introducing a ray with a covering vector r in the interior of the normal cone at z_e .
- Setting up an initial basis for complementary pivoting using the result of Phase I.
- **1** Doing complementary pivoting until the multiplier on *r* becomes zero.

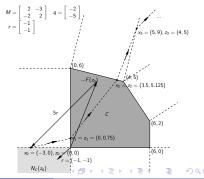
$$-(Mz + q) + \mu r = -A^{T}u - w + v$$

$$Az(\geq, =, \leq)a \perp u(\geq, \text{free}, \leq)0$$

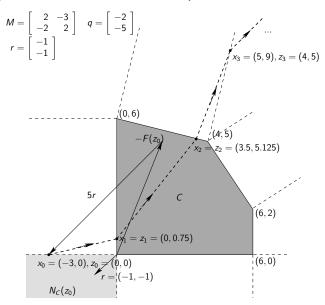
$$0 \leq w \perp z - l \geq 0$$

$$0 \leq v \perp u - z \geq 0$$

$$\mu \geq 0$$



Example (complementary pivoting)



Implementation

1 Solve Phase I over C using CPLEX.

minimize
$$0^T z$$

subject to $Az = a$
 $I \le z \le u$

- We have included slack and artificial variables.
- ▶ Thus, rank A = m.
- ② Do complementary pivoting (Lemke's method) until a feasible solution or a secondary ray is found.

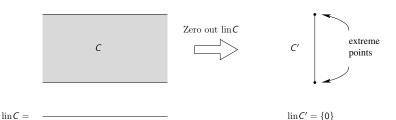
Large scale implementation: Computing an extreme point

No extreme point exists when C has a non-zero lineality space

$$\operatorname{lin} C = \ker \left[\begin{array}{c} A \\ H \end{array} \right] \neq \{0\}$$

(H encodes bounds.) In that case, we compute a boundary point of C.

- Computing a boundary point of C
 - ▶ Zero out lin C and compute an extreme point over reduced space.



Solving Phase I

If feasible region of C is not empty, then CPLEX comes with a basis triple (B, N_I, N_u) with $\mathbf{B} = A_B$ nonsingular such that

- $B = (B_1, \dots, B_m) \subseteq \{1, \dots, n\}$: indices of basic variables
- $N = \{1, ..., n\} \setminus B$: indices of nonbasic variables
- $N_I \cap N_u = \emptyset$, $N_I \cup N_u = \{j \notin B : x_j \text{ neither fixed nor free}\}$, $I_j > -\infty$ for $j \in N_I$ and $u_j < +\infty$ for $j \in N_u$
- $N_{fr} = \{j \in N : z_j \text{ free}\}$ and $N_{fx} = \{j \in N : z_j \text{ fixed}\}.$
- Note that $z_{N_I} = I_{N_I}, z_{N_u} = u_{N_u}, z_{N_{fr}} = 0, z_{N_{fx}} = I_{N_{fx}} = u_{N_{fx}}$, and $z_B = \mathbf{B}^{-1}(b A_N z_N)$.

Phase I result interpretation (when ∃ an extreme point)

If $N_{fr} = \emptyset$, then lin $C = \emptyset$ and Phase I gives us an extreme point.

- $z \in \mathcal{C}$ is an extreme point if $z = \alpha \bar{z} + (1 \alpha)\hat{z}$ for $0 < \alpha < 1$ and $\bar{z}, \hat{z} \in \mathcal{C}$ implies that $z = \bar{z} = \hat{z}$.
- $z \in C$ is a BFS if $\{A_{\cdot j} : I_j < z_j < u_j\}$ are linearly independent.
- $z \in \mathcal{C}$ is a BFS if and only if it is an extreme point.
- $N_{fr} = \emptyset$ implies z is a BFS, hence an extreme point of C.
- Existence of an extreme point implies that lin $C = \emptyset$.

Phase I result interpretation (when ∄ extreme points)

If $N_{fr} \neq \emptyset$, then lin $\mathcal{C} \neq \emptyset$ and Phase I gives us a boundary point.

- Define $z = (\bar{z}, \hat{z})$ where $\hat{z} = z_{N_{fr}}$. Fix $\hat{z} = 0$.
- Then we have a solution to the following Phase I.

minimize
$$0^T z$$

subject to $Az = a$
 $1 \le z \le u$
 $\hat{z} = 0$

• \bar{z} is a BFS in the reduced space of \mathcal{C} where $\hat{z}=0$, thus an extreme point in that space.

Initial basis setup for starting Lemke's method

From Phase I, we have a nonsingular B

$$\mathbf{B}_{\mathsf{Phasel}} = \left[egin{array}{cc} A_{\mathcal{A}B} & 0 \ A_{\mathcal{I}B} & -\mathbb{I}_{\mathcal{I}} \end{array}
ight]$$

where

 ${\cal A}$: the set of indices of active constraints

 ${\cal I}$: the set of indices of inactive constraints

So that A_{AB} is nonsingular.

Initial basis setup for starting Lemke's method

We need to solve a system of equations using complementary pivoting.

$$(Mz + q) - \mu r = A^{T}u + w - v$$

$$Az - s = a$$

$$0 \le s \perp u \ge 0$$

$$0 \le w \perp z - l \ge 0$$

$$0 \le v \perp u - z \ge 0$$

$$r \in N_{\mathcal{C}}(z_{\mathsf{Phasel}})$$

If $N_{fr} = \emptyset$,

$$\mathbf{B}_{\mathsf{Lemke}} = \left[\begin{array}{ccccc} M_{BB} & -A_{\mathcal{A}B}^{T} & 0 & 0 & 0 \\ M_{LB} & -A_{\mathcal{A}L}^{T} & -I_{L} & 0 & 0 \\ M_{UB} & -A_{\mathcal{A}U}^{T} & 0 & I_{U} & 0 \\ A_{\mathcal{A}B} & 0 & 0 & 0 & 0 \\ A_{\bar{\mathcal{A}}B} & 0 & 0 & 0 & -I_{\bar{\mathcal{A}}} \end{array} \right], \; \mathsf{Bvars} = \left[\begin{array}{c} z_{B} \\ u_{\mathcal{A}} \\ w_{L} \\ v_{U} \\ s_{\bar{\mathcal{A}}} \end{array} \right]$$

Initial basis setup for starting Lemke's method

If $N_{fr} \neq \emptyset$,

$$\mathbf{B}_{\mathsf{Lemke}} = \begin{bmatrix} M_{BB} & M_{BF} & -A_{\mathcal{A}B}^{\mathsf{T}} & 0 & 0 & 0 \\ M_{LB} & M_{LF} & -A_{\mathcal{A}L}^{\mathsf{T}} & -I_{L} & 0 & 0 \\ M_{UB} & M_{UF} & -A_{\mathcal{A}U}^{\mathsf{T}} & 0 & I_{U} & 0 \\ A_{\mathcal{A}B} & A_{\mathcal{A}F} & 0 & 0 & 0 & 0 \\ A_{\bar{\mathcal{A}}B} & A_{\bar{\mathcal{A}}F} & 0 & 0 & 0 & -I_{\bar{\mathcal{A}}} \end{bmatrix}, \; \mathsf{Bvars} = \begin{bmatrix} z_{B} \\ z_{F} \\ u_{\mathcal{A}} \\ w_{L} \\ v_{U} \\ s_{\bar{\mathcal{A}}} \end{bmatrix}$$

If M is invertible in the lineality space of C, then the above matrix is invertible.

Initial pivoting

Solve

$$\begin{bmatrix} M_{BB} & -A_{AB}^{T} & 0 & 0 & 0 \\ M_{LB} & -A_{AL}^{T} & -I_{L} & 0 & 0 \\ M_{UB} & -A_{AU}^{T} & 0 & I_{U} & 0 \\ A_{AB} & 0 & 0 & 0 & 0 \\ A_{\bar{A}B} & 0 & 0 & 0 & -I_{\bar{A}} \end{bmatrix} \begin{bmatrix} z_{B} \\ u_{A} \\ w_{L} \\ v_{U} \\ s_{\bar{A}} \end{bmatrix} = \begin{bmatrix} -q_{B} - M_{BL}z_{L} - M_{BU}z_{U} \\ -q_{L} - M_{LL}z_{L} - M_{LU}z_{U} \\ -q_{U} - M_{UL}z_{L} - M_{UU}z_{U} \\ b_{A} - A_{AL}z_{L} - A_{AU}z_{U} \\ b_{\bar{A}} - A_{\bar{A}L}z_{L} - A_{\bar{A}U}z_{U} \end{bmatrix}$$

- Note that z_B and $s_{\bar{A}}$ are feasible due to Phase I.
- If any of u_A , w_L , or v_U is infeasible, then make r basic by increasing μ so that all of them become feasible.

$$r = \left(\sum_{i \in \mathcal{A}} \begin{bmatrix} -A_{iB}^T \\ -A_{iL}^T \\ -A_{iU}^T \end{bmatrix} + \sum_{i \in L} \begin{bmatrix} 0 \\ -I_i \\ 0 \end{bmatrix} + \sum_{i \in U} \begin{bmatrix} 0 \\ 0 \\ I_i \end{bmatrix} \right) \in N_{\mathcal{C}}(z_{\mathsf{Phase I}})$$

Experimental results (LPs)

Some promising results:

Data set	# iteration	ns (Lemke)	Total elapsed time (secs)		
	PathAVI	PATH	PathAVI	PATH	
25fv47	3938	3202	0.608037	1.788112	
bnl1	592	3230	0.084005	0.616039	
pilotnov	3046	> 10,000	0.668043	> 7.456466	
scfxm3	988	4129	0.140008	1.064067	
wood1p	336	1325	0.216013	7.120446	
woodw	1292	9878	0.652040	27.145696	

Table : Solving LP (linear programming) problems using PathAVI and PATH (netlib data sets)

Experimental results (symmetric psd QPs)

Data set	# iteration	ons (Lemke)	Total elapsed time (secs)		
Data Set	PathAVI	PATH	PathAVI	PATH	
cvxqp1_M	340	1063	0.076004	0.532033	
dualc8	4	39	0.008000	0.008001	
qscagr25	240	868	0.020001	0.052004	
qscfxm3	1072	2021	0.160009	0.504031	
qship12l	1399	3246	0.524033	1.188074	
cont-101	99	750	18.049127	118.071378	

Table : Solving QP (quadratic programming) problems using PathAVI and PATH, Q is symmetric and PSD

 QP problems were taken from "I. Maros, Cs. Meszaros: A Repository of Convex Quadratic Programming Problems, Optimization Methods and Software, 1999"

Experimental results (unsymmetric pd M)

Data set	# iteration	ns (Lemke)	Total elapsed time (secs)		
	PathAVI	PATH	PathAVI	PATH	
bnl1	657	> 10,000	0.136008	> 26.065629	
capri	296	571	0.016001	0.100006	
fit1d	1346	1839	0.156010	0.232014	
scsd8	1414	2155	0.936058	3.152197	
scfxm3	823	2262	0.212014	5.736358	
wood1p	413	915	0.288018	1.440090	

Table : Solving AVI problems using PathAVI and PATH, M is unsymmetric PD

M was randomly generated using MATLAB.

Conclusions

- ullet Treat feasible set ${\mathcal C}$ and ${\mathcal N}_{\mathcal C}$ explicitly leads to stronger theory
- Ensure feasibility $\mathcal{C} \neq \emptyset$, and F only evaluated over \mathcal{C}
- Works when ∇F is not symmetric
- Can implement theory in large scale setting and get robustness (avoid rank deficiency in initial basis, high accuracy)
- Faster
- Available (subroutine or within GAMS/EMP) requires CPLEX
- Embed AVI solver in a Newton Method for VI
 - Preprocessing incorporated
 - Each Newton step solves an AVI
 - Hot start critical
 - Nonmonotone pathsearch, watchdogging (another talk)

Splitting Methods

ullet Suppose ${\mathcal T}$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

- ullet Can devise Newton methods (e.g. SQP) that treat F via calculus and ${\cal T}$ via convex analysis
- Alternatively, can split F(z) = A(z) + B(z) (and possibly \mathcal{T} also) so we solve (GE) by solving a sequence of problems involving just

$$\mathcal{T}_1(z) = A(z)$$
 and $\mathcal{T}_2(z) = B(z) + \mathcal{T}(z)$

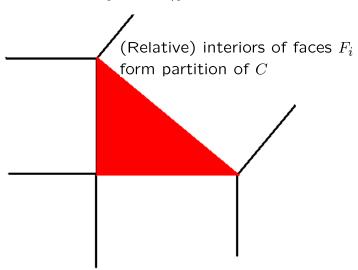
where each of these is "simpler"

Forward-Backward splitting:

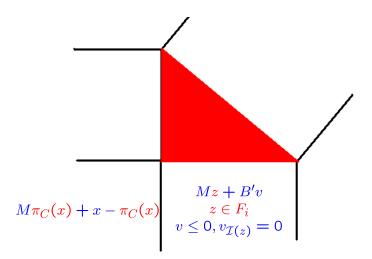
$$z^{k+1} = (I + c_k T_2)^{-1} (I - c_k T_1) (z^k),$$

◆ロト ◆問 ト ◆差 ト ◆差 ト ・ 差 ・ からで

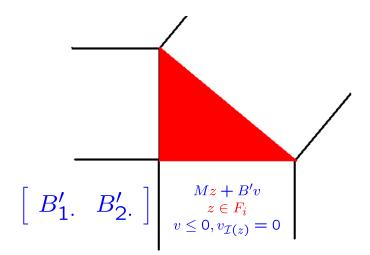
Normal manifold = $\{F_i + N_{F_i}\}$



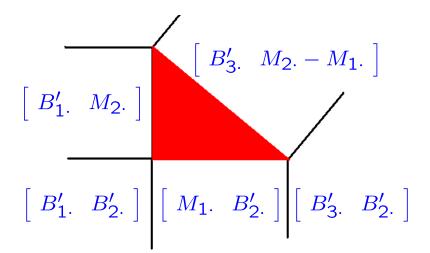
$$C = \{z | Bz \ge b\}, N_C(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$$



$$C = \{z | Bz \ge b\}, N_C(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$$



$$C = \{z | Bz \ge b\}, F(z) = Mz + q$$

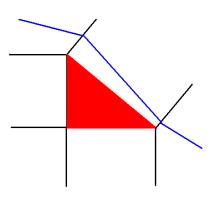


Cao/Ferris Path (Eaves)

- Start in cell that has interior (face is an extreme point)
- Move towards a zero of affine map in cell
- Update direction when hit boundary (pivot)
- Solves or determines infeasible if M is copositive-plus on rec(C)
- Solves 2-person bimatrix games, 3-person games too, but these are nonlinear

Ferris (Univ. Wisconsin)

But algorithm has exponential complexity (von Stengel et al)



Banff, February 2014